Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Sparse Matrix Vector Product using Block-Based Kernels Without Zero Padding on Processors with AVX-512 Instructions

The sparse matrix-vector product (SpMV) is a fundamental operation in many scientific applications from various fields. The High Performance Computing (HPC) community has therefore continuously invested a lot of effort to provide an efficient SpMV kernel on modern CPU architectures. It has been shown that block-based kernels are helpful to achieve high performance, but also that they are diffic...

متن کامل

The sparse matrix vector product on GPUs

The sparse matrix vector product (SpMV) is a paramount operation in engineering and scientific computing and, hence, has been a subject of intense research for long. The irregular computations involved in SpMV make its optimization challenging. Therefore, enormous effort has been devoted to devise data formats to store the sparse matrix with the ultimate aim of maximizing the performance. The G...

متن کامل

A Fast Sparse Block Circulant Matrix Vector Product

In the context of computed tomography (CT), iterative image reconstruction techniques are gaining attention because high-quality images are becoming computationally feasible. They involve the solution of large systems of equations, whose cost is dominated by the sparse matrix vector product (SpMV). Our work considers the case of the sparse matrices being block circulant, which arises when takin...

متن کامل

Fast Sorting Algorithms using AVX-512 on Intel Knights Landing

The modern CPU’s design, which is composed of hierarchical memory and SIMD/vectorization capability, governs the potential for algorithms to be transformed into efficient implementations. The release of the AVX-512 changed things radically, and motivated us to search for an efficient sorting algorithm that can take advantage of it. In this paper, we describe the best strategy we have found, whi...

متن کامل

Performance Improvement of Sparse Matrix Vector Product on Vector Machines

Many applications based on finite element and finite difference methods include the solution of large sparse linear systems using preconditioned iterative methods. Matrix vector multiplication is one of the key operations that has a significant impact on the performance of any iterative solver. In this paper, recent developments in sparse storage formats on vector machines are reviewed. Then, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PeerJ Computer Science

سال: 2018

ISSN: 2376-5992

DOI: 10.7717/peerj-cs.151